Изоляторы широко используются в воздушных линиях электропередач для обеспечения механической поддержки и электрической защиты, а также в распределительных линиях и подстанциях.Силиконовая резина является наиболее широко используемым полимерным изоляционным материалом для изоляторов высокого напряжения. Композитный изолятор марки HAIVO изготовлен из силиконовой резины. В зависимости от напряжения в энергосистемах используются различные виды изоляторов, у нас есть штыревой изолятор, изолятор деформации, подвесной изолятор. Изолятор столба, изолятор длинного стержня, изолятор горизонтального столба, изолятор железной дороги, изолятор скобы, изолятор пребывания.
| штат: | |
|---|---|
Композитные изоляторы для электрифицированных железных дорог имеют компактную структуру, прочную целостность, хорошую противообрастающую способность, легкий вес, небольшие размеры, хорошие характеристики внутренней и внешней изоляции, высокую механическую прочность и не требуют регулярной очистки.В основном они используются для строительства высокоскоростных железных дорог и городского легкорельсового транспорта.
Композитные изоляторы для электрифицированных железных дорог также названный изоляторы железнодорожные, детали контактной сети электрифицированных железных дорог, полимерные изоляторы для электрифицированных железных дорог железнодорожные полимерные изоляторы.
Опорный рычаг изготовлен из нержавеющей стали или горячеоцинкованная литая сталь, обладающая лучшими антикоррозионными характеристиками.Он решает коррозию продуктов в различных климатических условиях, таких как влажность и кислотные дожди.Это может значительно продлить срок службы продукта и обеспечить надежное оборудование для реализации компактной конструкции схемы.
Электрифицированные железные дороги Композитные изоляторы подходит для электрифицированных железнодорожных туннелей со сложными условиями эксплуатации, что может эффективно предотвратить аварии с перекрытием загрязнения и снизить объем работ по очистке и техническому обслуживанию.Из-за своего небольшого размера, когда просвет туннеля мал, это продукт, который не могут заменить фарфоровые и стеклянные изоляторы.
1) Корпус из силиконового каучука, сформированный путем полного впрыска, обладает хорошей гидрофобностью, миграцией дрофобности и устойчивостью к почве, а также отличной электроизоляцией и устойчивостью к старению, что может эффективно предотвратить эти аварии, связанные с выбросами загрязнения, чтобы обеспечить безопасную работу высоких линии передачи напряжения.
2) Используется модифицированный стержень из эпоксидной смолы, армированный стекловолокном ECR, поскольку он обладает хорошей устойчивостью к высоким температурам, коррозии под напряжением и воздействию кислот, а также прекрасным демпфирующим действием, высокой прочностью на растяжение (> 1200 МПа) и сопротивлением ползучести и усталостному разрушению, что эффективно обеспечить качество внутренней изоляции и механическую прочность изоляторов.
3) Концевые фитинги обжимаются на стержне из стекловолокна с помощью обжимного устройства с голосовым управлением. Изоляторы с этой техникой обжима имеют высокую механическую прочность и малую дисперсию.
4) Место соединения между концевыми фитингами и стержнями сплавлено с корпусом навесов за счет общего высокотемпературного литья под давлением вулканизированного силиконового каучука, поскольку это может минимизировать поверхность контакта.
5) Внутренняя радиальная конструкция с несколькими уплотнениями эффективно гарантирует долгосрочную надежность уплотнения вокруг соединения между концевыми фитингами и стержнями.
Примечание:
1 Применимый стандарт: IEC, ANSI, GB и другие международные стандарты
2 нормальный цвет композитного изолятора: красный, серый и белый.
3 Специальная конструкция в соответствии с требованиями заказчика.
| Основной технический параметр | ||||||||||
| Модель | Высота конструкцииt Хм) | Номинальная длина пути утечки Л (мм) | Расчетное расстояние утечки Л (мм) | Номинальное расстояние по сухой дуге (мм) | Расчетное расстояние по сухой дуге (мм) | Номинальная механическая нагрузка на разрыв (кН) | Стандартный пик выдерживаемого грозового импульса (кВ) | Сухое выдерживаемое напряжение общественной частоты (кВ) | Влажное выдерживаемое напряжение общественной частоты (кВ) | Выдерживаемое напряжение общественной частоты искусственного загрязнения (кВ) |
| FQX-25/100(120)QT | 700±20 | 1200 | 1300 | 500 | 511 | 100(120) | 270 | 160 | 130 | 36 |
| FQX-25/100(120)QH | ||||||||||
| FQX-25/100(120)ХХ | ||||||||||
| FQD-25/100(120)HY | 734±20 | |||||||||
| FQX-25/160QT | 750±20 | 512 | 160 | 31.5 | ||||||
| FQX-25/160QH | ||||||||||
| FQX-25/160HH | ||||||||||
Композитные изоляторы для электрифицированных железных дорог имеют компактную структуру, прочную целостность, хорошую противообрастающую способность, легкий вес, небольшие размеры, хорошие характеристики внутренней и внешней изоляции, высокую механическую прочность и не требуют регулярной очистки.В основном они используются для строительства высокоскоростных железных дорог и городского легкорельсового транспорта.
Композитные изоляторы для электрифицированных железных дорог также названный изоляторы железнодорожные, детали контактной сети электрифицированных железных дорог, полимерные изоляторы для электрифицированных железных дорог железнодорожные полимерные изоляторы.
Опорный рычаг изготовлен из нержавеющей стали или горячеоцинкованная литая сталь, обладающая лучшими антикоррозионными характеристиками.Он решает коррозию продуктов в различных климатических условиях, таких как влажность и кислотные дожди.Это может значительно продлить срок службы продукта и обеспечить надежное оборудование для реализации компактной конструкции схемы.
Электрифицированные железные дороги Композитные изоляторы подходит для электрифицированных железнодорожных туннелей со сложными условиями эксплуатации, что может эффективно предотвратить аварии с перекрытием загрязнения и снизить объем работ по очистке и техническому обслуживанию.Из-за своего небольшого размера, когда просвет туннеля мал, это продукт, который не могут заменить фарфоровые и стеклянные изоляторы.
1) Корпус из силиконового каучука, сформированный путем полного впрыска, обладает хорошей гидрофобностью, миграцией дрофобности и устойчивостью к почве, а также отличной электроизоляцией и устойчивостью к старению, что может эффективно предотвратить эти аварии, связанные с выбросами загрязнения, чтобы обеспечить безопасную работу высоких линии передачи напряжения.
2) Используется модифицированный стержень из эпоксидной смолы, армированный стекловолокном ECR, поскольку он обладает хорошей устойчивостью к высоким температурам, коррозии под напряжением и воздействию кислот, а также прекрасным демпфирующим действием, высокой прочностью на растяжение (> 1200 МПа) и сопротивлением ползучести и усталостному разрушению, что эффективно обеспечить качество внутренней изоляции и механическую прочность изоляторов.
3) Концевые фитинги обжимаются на стержне из стекловолокна с помощью обжимного устройства с голосовым управлением. Изоляторы с этой техникой обжима имеют высокую механическую прочность и малую дисперсию.
4) Место соединения между концевыми фитингами и стержнями сплавлено с корпусом навесов за счет общего высокотемпературного литья под давлением вулканизированного силиконового каучука, поскольку это может минимизировать поверхность контакта.
5) Внутренняя радиальная конструкция с несколькими уплотнениями эффективно гарантирует долгосрочную надежность уплотнения вокруг соединения между концевыми фитингами и стержнями.
Примечание:
1 Применимый стандарт: IEC, ANSI, GB и другие международные стандарты
2 нормальный цвет композитного изолятора: красный, серый и белый.
3 Специальная конструкция в соответствии с требованиями заказчика.
| Основной технический параметр | ||||||||||
| Модель | Высота конструкцииt Хм) | Номинальная длина пути утечки Л (мм) | Расчетное расстояние утечки Л (мм) | Номинальное расстояние по сухой дуге (мм) | Расчетное расстояние по сухой дуге (мм) | Номинальная механическая нагрузка на разрыв (кН) | Стандартный пик выдерживаемого грозового импульса (кВ) | Сухое выдерживаемое напряжение общественной частоты (кВ) | Влажное выдерживаемое напряжение общественной частоты (кВ) | Выдерживаемое напряжение общественной частоты искусственного загрязнения (кВ) |
| FQX-25/100(120)QT | 700±20 | 1200 | 1300 | 500 | 511 | 100(120) | 270 | 160 | 130 | 36 |
| FQX-25/100(120)QH | ||||||||||
| FQX-25/100(120)ХХ | ||||||||||
| FQD-25/100(120)HY | 734±20 | |||||||||
| FQX-25/160QT | 750±20 | 512 | 160 | 31.5 | ||||||
| FQX-25/160QH | ||||||||||
| FQX-25/160HH | ||||||||||
Керамические изоляторы, в основном состоящие из силиката алюминия, являются важнейшими компонентами воздушных линий электропередачи и распределения электроэнергии. Их долговременная надежность подвергается сомнению из-за стрессовых факторов окружающей среды, приводящих к ухудшению производительности. В этой статье анализируются фундаментальные механизмы старения керамических изоляторов с упором на ультрафиолетовое (УФ) излучение и накопление загрязнений. В нем также исследуются последние достижения в области технологий функциональных покрытий, предназначенных для смягчения этих эффектов, тем самым продлевая срок службы и обеспечивая устойчивость сети.
На протяжении десятилетий основная задача ограничителя перенапряжения оставалась неизменной: защищать электрооборудование от переходных перенапряжений, вызванных ударами молнии или коммутационными операциями, путем обеспечения пути с низким сопротивлением к земле и быстрого восстановления нормальной работы системы. Однако средства достижения этой миссии претерпевают радикальные изменения. Под влиянием требований современных электросетей – растущей интеграции возобновляемых источников энергии, цифровизации и потребности в большей надежности – технология разрядников выходит за рамки своей традиционной пассивной роли и переходит в эпоху интеллектуальных, адаптивных и высоконадежных компонентов.
Изолирующие выключатели, также известные как разъединители или изоляторы, являются основными компонентами электроэнергетических систем. Их основная функция — обеспечить видимую точку разрыва изоляции, обеспечивая безопасное обслуживание и ремонт последующего оборудования. В отличие от автоматических выключателей, они не предназначены для прерывания тока нагрузки или тока повреждения. Однако их надежная работа — открытие и закрытие по команде — имеет решающее значение для безопасности, гибкости и доступности системы.
Предохранители, как важнейшие, но часто игнорируемые устройства пассивной защиты, имеют основополагающее значение для электробезопасности. Их надежная работа зависит от целостности изолирующих поверхностей и плавкого элемента. В этой статье рассматриваются два распространенных режима отказа: перекрытие от поверхностного загрязнения и внутреннее старение/деградация. Мы предоставляем подробный технический анализ механизмов, описываем передовые и практичные методы идентификации, а также предписываем протокол систематического обслуживания для повышения надежности системы и предотвращения непредвиденных простоев.
Глобальный переход к интеллектуальным сетям представляет собой фундаментальный сдвиг в том, как мы генерируем, распределяем и потребляем электроэнергию. Интеллектуальные сети, характеризующиеся двунаправленным потоком энергии, глубокой интеграцией распределенных энергетических ресурсов (DER), таких как солнечная и ветровая энергия, развитая инфраструктура измерения (AMI) и анализ данных в реальном времени, требуют нового поколения защитных устройств. Среди них скромный предохранитель, являвшийся краеугольным камнем электрозащиты на протяжении более столетия, претерпевает глубокую технологическую трансформацию. Будущее технологии предохранителей заключается в превращении простого, жертвенного защитного компонента в интеллектуальный, адаптивный и богатый данными сетевой актив.
На протяжении десятилетий основная задача ограничителя перенапряжения оставалась неизменной: защищать электрооборудование от переходных перенапряжений, вызванных ударами молнии или коммутационными операциями, путем обеспечения пути с низким сопротивлением к земле и быстрого восстановления нормальной работы системы. Однако средства достижения этой миссии претерпевают радикальные изменения. Под влиянием требований современных электросетей – растущей интеграции возобновляемых источников энергии, цифровизации и потребности в большей надежности – технология разрядников выходит за рамки своей традиционной пассивной роли и переходит в эпоху интеллектуальных, адаптивных и высоконадежных компонентов.
Ограничители перенапряжения распределительных линий (DLSA) служат важными защитными устройствами, установленными в воздушных распределительных системах, обычно с номинальным напряжением от 1 до 38 кВ. Их основной функцией является защита электрооборудования, трансформаторов и инфраструктуры от переходных перенапряжений, вызванных ударами молнии, коммутационными операциями и другими электрическими помехами.
МОСКВА, РОССИЯ – Со 2 по 4 декабря 2025 года компания Zhejiang Haivo успешно приняла участие в Международной выставке электросетевого оборудования в России, представив свои последние инновации в области электрозащиты и технологий распределения электроэнергии.
Выключатели с выпадающими предохранителями являются важнейшими компонентами воздушных распределительных систем, обеспечивающими защиту и изоляцию от сверхтоков. Однако длительное воздействие окружающей среды, электрических и механических воздействий приводит к старению, что снижает производительность и надежность. В этой статье рассматриваются основные механизмы старения и излагаются эффективные стратегии профилактики и обслуживания для продления срока службы и обеспечения безопасности системы.
Системы наружных высоковольтных вилок и розеток (обычно от 1 до 52 кВ) представляют собой сложные инженерные решения, предназначенные для безопасного и надежного подключения к электросети в сложных условиях. Эти разъемные разъемы обеспечивают гибкое распределение электроэнергии, сохраняя при этом целостность системы в коммунальных сетях, промышленных установках и приложениях, использующих возобновляемые источники энергии. В отличие от низковольтных аналогов, высоковольтные разъемы требуют пристального внимания к контролю электрического поля, координации изоляции и защите окружающей среды.
Электронное письмо:jonsonchai@chinahaivo.com
WeChat: +86 13587716869
WhatsApp: +86 13587716869
Тел: 0086-577-62836929.
0086-577-62836926.
0086-13587716869.
0086-15957720101.
Если у вас есть какие-либо вопросы, вы можете связаться с нами через форму.