Изоляторы широко используются в воздушных линиях электропередач для обеспечения механической поддержки и электрической защиты, а также в распределительных линиях и подстанциях.Силиконовая резина является наиболее широко используемым полимерным изоляционным материалом для изоляторов высокого напряжения. Композитный изолятор марки HAIVO изготовлен из силиконовой резины. В зависимости от напряжения в энергосистемах используются различные виды изоляторов, у нас есть штыревой изолятор, изолятор деформации, подвесной изолятор. Изолятор столба, изолятор длинного стержня, изолятор горизонтального столба, изолятор железной дороги, изолятор скобы, изолятор пребывания.
| штат: | |
|---|---|
FXBW
HAIVOL
Изолятор подвески длинного стержня:
Представляем композитные изоляторы для высоковольтных линий электропередачи, предназначенные для поддержки, подвески и изоляции номиналом до 550кВ.Эти изоляторы соответствуют стандартам IEC 61109 и обеспечивают такие характеристики, как безопасная и надежная работа благодаря высокой механической прочности, а также компактная и легкая конструкция для удобства транспортировки.Они также могут похвастаться отличными антивибрационными и влагозащитными свойствами, высокими электрическими характеристиками и способностью противостоять загрязнению и старению, что делает их идеальными для использования в высокогорных условиях.Техническое обслуживание также упрощается.Эти изоляторы легкие, небьющиеся, гидрофобные и устойчивые к озону, ультрафиолетовому излучению и землетрясениям.
Ассортимент продукции:
Длинностержневые композитные изоляторы до 500кВ.
Изолятор штыревой композитный до 36кВ.
Опорно-композитный изолятор до 252кВ.
Линейный столб Композитный изолятор до 36кВ.
1) Корпус из силиконового каучука, сформированный путем полного впрыска, обладает хорошей гидрофобностью, миграцией дрофобности и устойчивостью к почве, а также отличной электроизоляцией и устойчивостью к старению, что может эффективно предотвратить эти аварии, связанные с выбросами загрязнения, чтобы обеспечить безопасную работу высоких линии передачи напряжения.
2) Используется модифицированный стержень из эпоксидной смолы, армированный стекловолокном ECR, поскольку он обладает хорошей устойчивостью к высоким температурам, коррозии под напряжением и воздействию кислот, а также прекрасным демпфирующим действием, высокой прочностью на растяжение (> 1200 МПа) и сопротивлением ползучести и усталостному разрушению, что эффективно обеспечить качество внутренней изоляции и механическую прочность изоляторов.
3) Концевые фитинги обжимаются на стержне из стекловолокна с помощью обжимного устройства с голосовым управлением. Изоляторы с этой техникой обжима имеют высокую механическую прочность и небольшую дисперсию.
4) Место соединения между концевыми фитингами и стержнями сплавлено с корпусом навесов за счет общего литья под давлением вулканизированного силиконового каучука при высокой температуре, поскольку это может минимизировать поверхность контакта.
5) Внутренняя радиальная конструкция с несколькими уплотнениями эффективно гарантирует долгосрочную надежность уплотнения вокруг соединения между концевыми фитингами и стержнями.
Примечание:
1 Применимый стандарт: IEC, ANSI, GB и другие международные стандарты
2 нормальный цвет композитного изолятора: красный, серый и белый.
3 Специальная конструкция в соответствии с требованиями заказчика.
| Основной технический параметр | |||||||
| Модель | Спец.fiЭд Механическая нагрузка (кН) | Расстояние H (мм) | Расстояние дуги (>мм)) | Минимальное расстояние утечки | Выдерживаемое напряжение грозового импульса (>=KVp) | Выдерживаемое напряжение промышленной частоты во влажном состоянии (>=KVr.ms) | Заводская модель |
| CS70XZ-100/465 | 70 | 360 | 215 | 480 | 100 | 50 | FXBW-15/70 |
| CS120XZ-100/465 | 120 | 400 | 215 | 480 | 100 | 50 | FXBW-15/120 |
| CS70XZ-120/450 | 70 | 413 | 275 | 544 | 120 | 60 | FXBW-17,5/70 |
| CS120XZ-120/450 | 120 | 513 | 275 | 544 | 120 | 60 | FXBW-17,5/120 |
| CS70XZ-125/480 | 70 | 461 | 320 | 550 | 125 | 70 | FXBW-24/70(20мм/КВ) |
| CS120XZ-125/480 | 120 | 490 | 320 | 550 | 125 | 70 | FXBW- 24/120(20мм/кВ) |
| CS70XZ-145/745 | 70 | 500 | 355 | 750 | 145 | 80 | FXBW-24/70(31мм/КВ) |
| CS120XZ-145/745 | 120 | 529 | 355 | 750 | 145 | 80 | FXBW- 24/120(31мм/КВ) |
| CS70XZ-185/900 | 70 | 541 | 400 | 900 | 185 | 95 | FXBW-36/70 |
| CS120XZ-185/900 | 120 | 570 | 400 | 900 | 185 | 95 | FXBW-36/70 |
| CS70XZ-230/1120 | 70 | 610 | 455 | 1250 | 230 | 105 | FXBW-36/70(31мм/КВ) |
| CS120XZ-230/1120 | 120 | 650 | 455 | 1250 | 230 | 105 | FXBW- 36/120(31мм/КВ) |
| CS70XZ-325/1815 | 70 | 860 | 710 | 2210 | 325 | 150 | FXBW-72.5/70 |
| CS120XZ-325/1815 | 120 | 900 | 710 | 2210 | 325 | 150 | FXBW-72.5/120 |
| CS70XZ-550/3150 | 70 | 1220 | 1055 | 3400 | 550 | 230 | FXBW-126/70 |
| CS120XZ-550/3150 | 120 | 1255 | 1055 | 3400 | 550 | 230 | FXBW-126/120 |
| CS120XZ-650/3625 | 120 | 1475 | 1270 | 4100 | 650 | 275 | FXBW-145/70 |
| CS210XZ-650/3625 | 160 | 1654 | 1485 | 4495 | 650 | 250 | FXBW-145/160 |
| CS120XZ-1050/6300 | 210 | 2550 | 2300 | 8500 | 1050 | 460 | FXBW-245/210 |
| CS160XZ-1050/6300 | 160 | 2430 | 2200 | 7000 | 1050 | 400 | FXBW-252/160 |
| CS120XZ-1425/9075 | 120 | 3180 | 2780 | 9880 | 1425 | 570 | FXBW-363/120 |
| CS210XZ-1425/9075 | 210 | 3440 | 3000 | 10450 | 1425 | 570 | FXBW-363/210 |
| CS120XZ-2250/13750 | 120 | 4450 | 4050 | 14100 | 2250 | 740 | FXBW-550/120 |
| CS210XZ-2250/13750 | 210 | 4450 | 4050 | 13850 | 2250 | 740 | FXBW-550/210 |
Изолятор подвески длинного стержня:
Представляем композитные изоляторы для высоковольтных линий электропередачи, предназначенные для поддержки, подвески и изоляции номиналом до 550кВ.Эти изоляторы соответствуют стандартам IEC 61109 и обеспечивают такие характеристики, как безопасная и надежная работа благодаря высокой механической прочности, а также компактная и легкая конструкция для удобства транспортировки.Они также могут похвастаться отличными антивибрационными и влагозащитными свойствами, высокими электрическими характеристиками и способностью противостоять загрязнению и старению, что делает их идеальными для использования в высокогорных условиях.Техническое обслуживание также упрощается.Эти изоляторы легкие, небьющиеся, гидрофобные и устойчивые к озону, ультрафиолетовому излучению и землетрясениям.
Ассортимент продукции:
Длинностержневые композитные изоляторы до 500кВ.
Изолятор штыревой композитный до 36кВ.
Опорно-композитный изолятор до 252кВ.
Линейный столб Композитный изолятор до 36кВ.
1) Корпус из силиконового каучука, сформированный путем полного впрыска, обладает хорошей гидрофобностью, миграцией дрофобности и устойчивостью к почве, а также отличной электроизоляцией и устойчивостью к старению, что может эффективно предотвратить эти аварии, связанные с выбросами загрязнения, чтобы обеспечить безопасную работу высоких линии передачи напряжения.
2) Используется модифицированный стержень из эпоксидной смолы, армированный стекловолокном ECR, поскольку он обладает хорошей устойчивостью к высоким температурам, коррозии под напряжением и воздействию кислот, а также прекрасным демпфирующим действием, высокой прочностью на растяжение (> 1200 МПа) и сопротивлением ползучести и усталостному разрушению, что эффективно обеспечить качество внутренней изоляции и механическую прочность изоляторов.
3) Концевые фитинги обжимаются на стержне из стекловолокна с помощью обжимного устройства с голосовым управлением. Изоляторы с этой техникой обжима имеют высокую механическую прочность и небольшую дисперсию.
4) Место соединения между концевыми фитингами и стержнями сплавлено с корпусом навесов за счет общего литья под давлением вулканизированного силиконового каучука при высокой температуре, поскольку это может минимизировать поверхность контакта.
5) Внутренняя радиальная конструкция с несколькими уплотнениями эффективно гарантирует долгосрочную надежность уплотнения вокруг соединения между концевыми фитингами и стержнями.
Примечание:
1 Применимый стандарт: IEC, ANSI, GB и другие международные стандарты
2 нормальный цвет композитного изолятора: красный, серый и белый.
3 Специальная конструкция в соответствии с требованиями заказчика.
| Основной технический параметр | |||||||
| Модель | Спец.fiЭд Механическая нагрузка (кН) | Расстояние H (мм) | Расстояние дуги (>мм)) | Минимальное расстояние утечки | Выдерживаемое напряжение грозового импульса (>=KVp) | Выдерживаемое напряжение промышленной частоты во влажном состоянии (>=KVr.ms) | Заводская модель |
| CS70XZ-100/465 | 70 | 360 | 215 | 480 | 100 | 50 | FXBW-15/70 |
| CS120XZ-100/465 | 120 | 400 | 215 | 480 | 100 | 50 | FXBW-15/120 |
| CS70XZ-120/450 | 70 | 413 | 275 | 544 | 120 | 60 | FXBW-17,5/70 |
| CS120XZ-120/450 | 120 | 513 | 275 | 544 | 120 | 60 | FXBW-17,5/120 |
| CS70XZ-125/480 | 70 | 461 | 320 | 550 | 125 | 70 | FXBW-24/70(20мм/КВ) |
| CS120XZ-125/480 | 120 | 490 | 320 | 550 | 125 | 70 | FXBW- 24/120(20мм/кВ) |
| CS70XZ-145/745 | 70 | 500 | 355 | 750 | 145 | 80 | FXBW-24/70(31мм/КВ) |
| CS120XZ-145/745 | 120 | 529 | 355 | 750 | 145 | 80 | FXBW- 24/120(31мм/КВ) |
| CS70XZ-185/900 | 70 | 541 | 400 | 900 | 185 | 95 | FXBW-36/70 |
| CS120XZ-185/900 | 120 | 570 | 400 | 900 | 185 | 95 | FXBW-36/70 |
| CS70XZ-230/1120 | 70 | 610 | 455 | 1250 | 230 | 105 | FXBW-36/70(31мм/КВ) |
| CS120XZ-230/1120 | 120 | 650 | 455 | 1250 | 230 | 105 | FXBW- 36/120(31мм/КВ) |
| CS70XZ-325/1815 | 70 | 860 | 710 | 2210 | 325 | 150 | FXBW-72.5/70 |
| CS120XZ-325/1815 | 120 | 900 | 710 | 2210 | 325 | 150 | FXBW-72.5/120 |
| CS70XZ-550/3150 | 70 | 1220 | 1055 | 3400 | 550 | 230 | FXBW-126/70 |
| CS120XZ-550/3150 | 120 | 1255 | 1055 | 3400 | 550 | 230 | FXBW-126/120 |
| CS120XZ-650/3625 | 120 | 1475 | 1270 | 4100 | 650 | 275 | FXBW-145/70 |
| CS210XZ-650/3625 | 160 | 1654 | 1485 | 4495 | 650 | 250 | FXBW-145/160 |
| CS120XZ-1050/6300 | 210 | 2550 | 2300 | 8500 | 1050 | 460 | FXBW-245/210 |
| CS160XZ-1050/6300 | 160 | 2430 | 2200 | 7000 | 1050 | 400 | FXBW-252/160 |
| CS120XZ-1425/9075 | 120 | 3180 | 2780 | 9880 | 1425 | 570 | FXBW-363/120 |
| CS210XZ-1425/9075 | 210 | 3440 | 3000 | 10450 | 1425 | 570 | FXBW-363/210 |
| CS120XZ-2250/13750 | 120 | 4450 | 4050 | 14100 | 2250 | 740 | FXBW-550/120 |
| CS210XZ-2250/13750 | 210 | 4450 | 4050 | 13850 | 2250 | 740 | FXBW-550/210 |
Керамические изоляторы, в основном состоящие из силиката алюминия, являются важнейшими компонентами воздушных линий электропередачи и распределения электроэнергии. Их долговременная надежность подвергается сомнению из-за стрессовых факторов окружающей среды, приводящих к ухудшению производительности. В этой статье анализируются фундаментальные механизмы старения керамических изоляторов с упором на ультрафиолетовое (УФ) излучение и накопление загрязнений. В нем также исследуются последние достижения в области технологий функциональных покрытий, предназначенных для смягчения этих эффектов, тем самым продлевая срок службы и обеспечивая устойчивость сети.
На протяжении десятилетий основная задача ограничителя перенапряжения оставалась неизменной: защищать электрооборудование от переходных перенапряжений, вызванных ударами молнии или коммутационными операциями, путем обеспечения пути с низким сопротивлением к земле и быстрого восстановления нормальной работы системы. Однако средства достижения этой миссии претерпевают радикальные изменения. Под влиянием требований современных электросетей – растущей интеграции возобновляемых источников энергии, цифровизации и потребности в большей надежности – технология разрядников выходит за рамки своей традиционной пассивной роли и переходит в эпоху интеллектуальных, адаптивных и высоконадежных компонентов.
Изолирующие выключатели, также известные как разъединители или изоляторы, являются основными компонентами электроэнергетических систем. Их основная функция — обеспечить видимую точку разрыва изоляции, обеспечивая безопасное обслуживание и ремонт последующего оборудования. В отличие от автоматических выключателей, они не предназначены для прерывания тока нагрузки или тока повреждения. Однако их надежная работа — открытие и закрытие по команде — имеет решающее значение для безопасности, гибкости и доступности системы.
Предохранители, как важнейшие, но часто игнорируемые устройства пассивной защиты, имеют основополагающее значение для электробезопасности. Их надежная работа зависит от целостности изолирующих поверхностей и плавкого элемента. В этой статье рассматриваются два распространенных режима отказа: перекрытие от поверхностного загрязнения и внутреннее старение/деградация. Мы предоставляем подробный технический анализ механизмов, описываем передовые и практичные методы идентификации, а также предписываем протокол систематического обслуживания для повышения надежности системы и предотвращения непредвиденных простоев.
Глобальный переход к интеллектуальным сетям представляет собой фундаментальный сдвиг в том, как мы генерируем, распределяем и потребляем электроэнергию. Интеллектуальные сети, характеризующиеся двунаправленным потоком энергии, глубокой интеграцией распределенных энергетических ресурсов (DER), таких как солнечная и ветровая энергия, развитая инфраструктура измерения (AMI) и анализ данных в реальном времени, требуют нового поколения защитных устройств. Среди них скромный предохранитель, являвшийся краеугольным камнем электрозащиты на протяжении более столетия, претерпевает глубокую технологическую трансформацию. Будущее технологии предохранителей заключается в превращении простого, жертвенного защитного компонента в интеллектуальный, адаптивный и богатый данными сетевой актив.
На протяжении десятилетий основная задача ограничителя перенапряжения оставалась неизменной: защищать электрооборудование от переходных перенапряжений, вызванных ударами молнии или коммутационными операциями, путем обеспечения пути с низким сопротивлением к земле и быстрого восстановления нормальной работы системы. Однако средства достижения этой миссии претерпевают радикальные изменения. Под влиянием требований современных электросетей – растущей интеграции возобновляемых источников энергии, цифровизации и потребности в большей надежности – технология разрядников выходит за рамки своей традиционной пассивной роли и переходит в эпоху интеллектуальных, адаптивных и высоконадежных компонентов.
Ограничители перенапряжения распределительных линий (DLSA) служат важными защитными устройствами, установленными в воздушных распределительных системах, обычно с номинальным напряжением от 1 до 38 кВ. Их основной функцией является защита электрооборудования, трансформаторов и инфраструктуры от переходных перенапряжений, вызванных ударами молнии, коммутационными операциями и другими электрическими помехами.
МОСКВА, РОССИЯ – Со 2 по 4 декабря 2025 года компания Zhejiang Haivo успешно приняла участие в Международной выставке электросетевого оборудования в России, представив свои последние инновации в области электрозащиты и технологий распределения электроэнергии.
Выключатели с выпадающими предохранителями являются важнейшими компонентами воздушных распределительных систем, обеспечивающими защиту и изоляцию от сверхтоков. Однако длительное воздействие окружающей среды, электрических и механических воздействий приводит к старению, что снижает производительность и надежность. В этой статье рассматриваются основные механизмы старения и излагаются эффективные стратегии профилактики и обслуживания для продления срока службы и обеспечения безопасности системы.
Системы наружных высоковольтных вилок и розеток (обычно от 1 до 52 кВ) представляют собой сложные инженерные решения, предназначенные для безопасного и надежного подключения к электросети в сложных условиях. Эти разъемные разъемы обеспечивают гибкое распределение электроэнергии, сохраняя при этом целостность системы в коммунальных сетях, промышленных установках и приложениях, использующих возобновляемые источники энергии. В отличие от низковольтных аналогов, высоковольтные разъемы требуют пристального внимания к контролю электрического поля, координации изоляции и защите окружающей среды.
Электронное письмо:jonsonchai@chinahaivo.com
WeChat: +86 13587716869
WhatsApp: +86 13587716869
Тел: 0086-577-62836929.
0086-577-62836926.
0086-13587716869.
0086-15957720101.
Если у вас есть какие-либо вопросы, вы можете связаться с нами через форму.